
© SCDsource 2007-2010 Page 1 of 31

Special Technology Report

Mixing Formal and Dynamic Verification, Part 1

By Bill Murray

Over the last few years, there has been a noticeable uptick in the use of formal verification to
augment dynamic verification. Given that both techniques leverage assertions [1, 2], one would
assume that there would be a great deal of collaboration between dynamic testbenches and formal
property checking, the user teams and the tools. Indeed, a DVCon 2009 panel discussed mixing the
two – thus the title of this special technology report (STR).

In this STR, we dig down to the use case level to determine how formal is being used, and how it
augments dynamic verification. We used 17 use cases ranging from early RTL analysis to functional
sign-off to survey 19 engineers and engineering managers at 16 industry-leading IP, chip and systems
design companies to understand their formal adoption and use in 2006 and 2009, and projected use in
2012. We also interviewed respondents from 9 of those companies to gain even more detailed insight.
Of course, the user responses apply only to their individual groups, not necessarily throughout their
multi-divisional companies.

We found that there is certainly collaboration between simulation and formal verification, but “mixing”
might be a bit of an overstatement at this stage. The methodologies, standard common coverage
metrics, and tool interoperability required by true mixing are in a distinctly embryonic stage of
development.

The good news is that formal verification has developed to a level of usefulness and maturity at which
design and verification teams want to mix it with tried and more-or-less trusted dynamic verification.
What has changed in formal verification to make this possible?

In part 1 of this STR, we:

 Discuss the upper-level results of our use case survey.

 Learn from the respondents why formal is enjoying increased adoption.

 Review formal’s sweet ‘n’ sour spots and how the sweet spots are expanding.

In part 2 of the STR, we discuss:

 The detailed results for the 17 use cases.

 How formal is currently being used with dynamic verification.

 The application of formal in the ESL space.

 How technology users and providers envisage formal methods in 2012.

© SCDsource 2007-2010 Page 2 of 31

Now let’s review what users at Alcatel-Lucent, Analog Devices, ARM, Cisco, DE Shaw Research
(DESRES), Fujitsu Microelectronics Europe, HP, IBM, Infineon, Intel, nVidia, Qualcomm, Saab, Silicon
Logic Engineering (Tundra), STMicroelectronics and Sun Microsystems said to SCDsource. This is their
story.

SCDsource User Survey

User Base Broadened

Of the 19 respondents, 14 were employing formal verification in 2006 – this STR refers to them as
established users. The five respondents who adopted formal after 2006 (dubbed “recent adopters”)
constitute a 36 percent increase in user breadth from 2006 to 2009.

Use Employment Deepened

Our survey shows a significant deepening of proliferation within user groups. Figure 1 shows the
average number of use cases employed in 2006 and 2009, and projected employment in 2012.
Average use cases grew 46 percent from 6.6 in 2006 to 9.7 in 2009. Our respondents project this to
grow by 32 percent to 12.8 use cases in 2012.

Figure 1: The deepening use of formal verification (Source: SCDsource)

Total Use Nearly Doubled

So, what is the total formal deployment across the sample of 19 user groups? The user breadth and
use depth are combined in figure 2. In this population, the use of formal in 2009 is nearly double that
in 2006, and 2012 use is projected to increase another 32 percent over 2009. Projected 2012 use is
about 2.6X that of 2006. This equates to a compound annual growth rate (CAGR) from 2006 to 2012
of over 17 percent.

© SCDsource 2007-2010 Page 3 of 31

Figure 2: Formal verification use nearly doubled from 2006 to 2009 (Source: SCDsource)

In summary, one could argue that the growth rate in this sample is quite impressive for a verification
approach that has a reputation for being difficult to adopt and use.

Recent Adopters Ramp Fast

How difficult to adopt and use? Our survey shows that recent adopters are setting an aggressive pace.
Could this mean that formal is becoming easier?

The 5 recent adopters grew their average use case employment from zero in 2006 to 7.8 in 2009, and
project that this will grow by roughly 39 percent to 10.8 in 2012 (see figure 3).

The average use case employment by the 14 established users in 2006 was 6.6, and grew about 56
percent to 10.4 by 2009. This group projects that it will expand employment to 13.5 by 2012, a
growth of about 30 percent.

Figure 3: Recent adopters are catching up – fast (Source: SCDsource)

© SCDsource 2007-2010 Page 4 of 31

The recent adopters are employing more use cases in 2009 (7.8) than the established users were
employing in 2006 (6.6). If use deepens according to projections, the recent adopters’ use case
employment in 2012 (10.8) will be slightly higher than that of the established users in 2009 (10.4).
Recent adopters in this population will thus lag established users by about three years – but bear in
mind that many established users adopted formal quite a long time ago. Clearly, recent adopters are
catching up with established users – fast.

Advancing Backwards in the Flow

Formal is renowned for its ability to perform exhaustive verification – and for the decades-long
perception that the user must have a Ph.D. in maths to undertake it. However, formal’s proponents
claim that modern tools and methodologies make it accessible to mainstream verification engineers.
Indeed, they claim that formal is expanding into the design domain. Our survey shows that they are
right on both counts.

The use case expansion – shown in much more detail in part 2 of this STR – clearly shows formal’s
advance into mainstream verification, but what about design? One example of formal’s expansion into
the design domain is that of early RTL analysis. It is already among the most widely-employed use
cases in 2009, used by 68 percent of our respondents. Moreover, our survey projects use to increase
by the year 2012 to 95 percent of respondents (see figure 4).

Figure 4: Formal has advanced backward into design (Source: SCDSource)

Formal has expanded its scope, but that doesn’t mean that it has lost its focus. Its major traditional
perceived strength – exhaustive verification – is being performed by 68 percent of respondents in
2009, expected to increase to 84 percent by 2012 (see our cartoon at the end of part 1). Exhaustive
verification of block features, functions, operations, and transactions remains the leading use case in
terms of importance, with about 53 percent of respondents ranking it in their top 3 use cases.

Clearly, formal is fulfilling its original exhaustive verification mission, but equally clearly, it is has
advanced backwards in the design flow – and into mainstream design and verification.

© SCDsource 2007-2010 Page 5 of 31

Tools Revenue Numbers

According to Gary Smith at Gary Smith EDA, the CAGR for formal tools revenue over the period 2007
to 2012 is about three times that of simulation tools. Specifically, formal verification and formal
analysis revenues are growing at a CAGR of 4.2 percent and 4.3 percent respectively, while RTL
simulation is growing at only 1.5 percent.

The absolute revenue growth results for formal appear to conflict with a common perception – and
with our survey results – that it is enjoying noticeably greater proliferation than heretofore. According
to Smith, these modest revenue growth numbers are the result of competitive price pressure in RTL
design and verification tools in general, especially from Cadence, Mentor and Synopsys.

Formal Adoption - Why Now?

For decades, proponents of formal property checking have claimed that it can achieve higher
verification quality because it can reach parts of the design that simulation cannot reach – at least,
not efficiently in a bounded project time. They claimed not only that formal can verify that a design
behaves according to the specification, but also that its exhaustive nature enables it to detect
unintended behavior far more effectively than can dynamic verification. Early in the life of formal
property checking, some claimed that it would one day replace simulation. It hasn’t. In fact, only in
the last few years have we seen it proliferate beyond a relatively small community of formal
verification experts into the mainstream. Why? What is happening to fuel this long-predicted and long-
awaited move? We start with the crumbling barriers to adoption.

Crumbling Adoption Barriers

Historically, formal verification has been perceived to be capacity-limited, difficult to use, and lacking
robust, systematic methodologies. These barriers have been gradually crumbling.

Capacity

According to Jason Baumgartner, formal technology lead in IBM’s Systems and Technology Group,
“For decades, formal algorithms bordered on the 'unusably unscalable.' The user had to target a piece
of the design small enough to avoid choking the formal verification tool, requiring copious expertise
and effort.”

IBM has significantly increased scalability by employing advanced techniques such as algorithms that
automatically reduce the size of the problem to be analyzed, and which alternate effort between
'proving” and “disproving.” Baumgartner said “We can now tackle the verification of large blocks such
as an entire floating point unit (FPU). This increased capacity eliminates, for example, the need to
whittle out from the FPU some small state machine that handles some complex bypassing, the
standalone verification of which would otherwise require orders of magnitude greater manual effort.”

Most respondents agree that capacity has improved, but many take the same view as Alcatel-Lucent’s
Joachim Knäblein. He is in an ASIC design support team that works on verification methodology and
internal tools, and wants the capacity of formal tools to increase further.

Ease of Use

Saab Avitronics started investigating formal methods and commercial tools as far back as 1996,
according to Håkan Forsberg, technical specialist. “As recently as 2004 to 2006, dynamic (simulation)
approaches were still better at verifying our designs – which are largely control-centric – despite
improvements in the formal tools. We had to use a lot of constraints to make the formal tools work,”
he said. “Now, it’s easier to write assertions and constraints, but it’s not necessarily more automated.”

http://www.garysmitheda.com/

© SCDsource 2007-2010 Page 6 of 31

The historical lack of industry-wide standard assertion languages created a barrier to formal adoption.
Tim Stremcha, a senior design engineer at Silicon Logic Engineering (SLE), observed that “Formal
verification became more compelling with the advent of standard assertion languages for both formal
and dynamic verification. A standard language enables us to import formal assertions into the dynamic
testbench environment.” Stremcha finds this especially helpful while the testbench is still under
construction. He said “Mixing formal assertions with the testbench allows us to co-develop the two
verification approaches. In effect, importing a new assertion provides a new directed test when
running formal, and the input constraints provide a very nice cross-check of the testbench stimulus.”

According to Volkan Esen, an ABV specialist in Infineon’s Enabling Technologies and Services (ETS)
group, the popularity of assertion-based simulation has spurred the adoption of formal verification. He
said “ABV knocked down the notation barrier to formal adoption. Users have stepped out of their VHDL
comfort zone to write assertions in PSL and SVA, and discovered that it’s as intuitive as a waveform
spec. These languages eliminate the hardcore maths.”

Methodology

Methodology is key. Summing up the view of many respondents, Bryan Dickman, Director, Design
Assurance at ARM, said “the performance and capacity of formal tools, though important, are less
important than having the appropriate methodologies to verify a particular class of problem. And you
still need engineers experienced in formally verifying that class of problem. We spend a lot of time
developing methodology with our tool suppliers and are seeing good progress toward some consistent
use models.”

Of course, improved capacity, ease of use, and methodologies reduce barriers to adoption, and all
undergo a “continuous improvement” process. But what are the incentives for using formal verification
at all?

Quest for Quality

According to our interviewees, it’s primarily about verification quality. Productivity is a key factor in
the return on investment (ROI) calculation that often determines whether formal is deployed in any
given situation. So, higher productivity is a hot button requirement in formal deployment, if not
always a driving factor.

Safety First

According to Saab’s Forsberg, “We must comply with an avionics industry verification requirement
specified in the Radio Technical Commission for Aeronautics (RTCA) document DO-254 – Design
Assurance Guidance for Airborne Electronic Hardware. These guidelines [3] mandate the use of
additional design assurance methods to verify complex safety-critical designs at the two highest
design assurance levels. Proposed advanced verification methods include safety-specific analysis,
elemental analysis, and formal methods.”

According to consultant Kristoffer Karlsson, who has worked with both Saab and the European
Aeronautic Defence and Space (EADS) company, formal methods afford the design team a more
effective means to:

 Analyze design intent and its implications for functional verification.

 Validate functional requirements within their operational context, and

 Validate the correctness and completeness of the assertions, whether used in formal or
dynamic assertion-based verification (ABV).

http://www.rtca.org/
http://www.rtca.org/downloads/ListofAvailableDocs_December_2008.htm#_Toc219024934

© SCDsource 2007-2010 Page 7 of 31

Bug Hunting First, but Sign-Off is the Ultimate Goal

We asked a recent adopter why his group adopted formal methods. Hewlett-Packard’s David Lacey is
the verification manager for chipset designs targeted at the company’s high end servers. Initially,
Lacey is tasking formal with bug hunting, but he envisages it as a sign-off criterion over the longer
haul.

“Our goal is to get high-quality silicon out in as few releases as possible,” said Lacey. “There are
certain classes of bugs that are very difficult, if not impossible, to find with simulation, and so that’s
where we’d like to derive value from this technology. Just in general, it’s another way to uncover bugs
that we might otherwise miss.”

Exhaustively Verify – No Anticipation Necessary

Alcatel-Lucent’s Knäblein tabulated a comparison between simulation and formal verification (see
figure 5).

Figure 5: Comparative benefits and costs of simulation and formal methods (Source: Alcatel-Lucent)

He cited verification quality as the main driver for formal adoption. “We ran simulation and formal
benchmarks on an ASIC design. We found about the same number of bugs in each, but not the same
bugs. Simulation found the more obvious bugs – those which occur at longer system run times.
Formal found the more exotic bugs, bugs which seldom occur, but which can be quite serious.”

Knäblein pointed out that “Simulation can make sure that something works the way it’s supposed to
work, but it cannot necessarily ensure that something does not work the way it’s not supposed to
work. For example, formal found a register map bug whereby some registers were mirrored in the
address space. Accessing this address evoked an unexpected response from the register map.
Normally, our simulation just checks whether the registers are accessible; it doesn’t check whether
invalid addresses do not respond to an access.”

Infineon has used formal verification for nearly a decade, according to Darren Galpin, a verification
team lead. Galpin’s group verifies silicon IP such as bus bridges and data mover engines [4] for the
company’s TriCore single-core 32-bit MCU-DSP architecture. “We use formal to verify interface blocks
that translate from one communication protocol to another. It’s not necessarily terribly complex, but it
is critical that we get it right,” he said. “With an exhaustive formal proof at the operation/transaction
level, we can be sure that we’ve completely covered a block’s functionality. Using random and/or
directed tests would require us to generate rather large coverage sets – and we still couldn’t be sure
that we’ve covered everything.” Galpin observed that formal is particularly good at detecting bugs in
legacy IP.

© SCDsource 2007-2010 Page 8 of 31

Exhaustive formal verification is especially useful in SoC design, where a great deal of functionality is
implemented in software, according to Wolfgang Ecker, principal engineer in Infineon’s ETS group. He
observed that “Formal eliminates the need to generate individual, targeted test cases and checkers.
For example, when we verify the correct integration of a module or IP into the SoC, we must verify its
correct connection and communication with the system bus. Using a non-formal approach, we would
first have to generate the transaction or bus access on the CPU side – essentially a software
instruction. We would then have to run several checks to ensure that all relevant registers are
modified, and that all other registers remain undisturbed. In contrast, exhaustive formal verification
executes a complete search of the entire function space, driven by specifications generated from IP-
XACT with SPRINT extensions. We don’t need to worry about software accesses and data bursts.”

Advancing Backwards in the Design Flow

Olivier Haller, verification methodology manager at STMicroelectronics, said “We’ve been using formal
verification for about ten years. We adopted a mixed formal and dynamic ABV methodology on blocks
and IP about a year ago.” Haller is responsible for the definition, deployment and promotion of
innovative verification methods across all ST divisions. He states that ST’s block and IP designers use
assertions to:

 Perform some initial verification.

 Capture design assumptions which assist the integration of the block into chip-level
verification.

 Ease and speed debug because assertions are often closer to the root cause of failure than
dynamic black-box verification data.

 Communicate desired verification coverage points to the verification engineer.

Richard Ho, researcher at DE Shaw Research (DESRES), said “We use formal methods to complement
simulation and have achieved improved quality of results (QoR). For instance, when a coverage point
is missed in simulation, we use formal to determine whether or not the point is reachable. If it is, a
simulation test case is constructed to find it, based on the formal verification counterexample.”

Ho continued “Also, early RTL code analysis using very simple, automatically-generated assertions is
invaluable in achieving coverage closure. Formal helps us to rapidly identify sections of code that are
complex and may cause coverage closure challenges for simulation. There is a close correlation
between these complex sections and the verification challenges that we encounter further down the
flow, so their early detection allows us to modify RTL code at the point in the flow when it is easiest to
modify.” [5]

Silicon Logic Engineering’s Stremcha works at the designer-verifier interface. “We use formal at the
design stage to improve the quality of design – independent sign-off verification by the verification
team remains mandatory.” The company develops silicon intellectual property in support of its ASIC
and FPGA design services. According to Stremcha, “Configurable IP, such as our chip-to-chip interface
protocol core that supports a range of SERDES lane counts and speeds, is a very good candidate for
formal property checking. Formal enables the designer to verify a set of configurations supported by
the IP to confirm correct operation. The verification team then verifies the extended range of
configuration options.”

In addition to IP quality, Stremcha points out another value – assertions mitigate issues in customer
design support. He said “Using a fully-described definition of the I/O specification enables us to quickly
identify customer usage issues, such as illegal traffic scenarios. With formal assertions, the customer
receives immediate feedback from the constraints if they violate the I/O specification.”

http://www.spiritconsortium.org/home/
http://www.spiritconsortium.org/home/
http://www.sprint-project.net/

© SCDsource 2007-2010 Page 9 of 31

Grappling with Multiprocessing

ARM’s Dickman pointed to the increasing complexity in key growth areas such as multiprocessing as
an example driver for the company’s formal adoption. “Coherent systems based upon MESI-like
[Modified, Exclusive, Shared, Invalid] protocols may be a good target for formal verification,” he said.

ARM has used formal verification as a late-stage back-up in some projects for a number of years, but
has ramped its efforts in formal over the last six months in the hope of reaping a greater ROI. “Using
assertions to capture design intent in the design phase and then using them later in simulation is an
accepted best practice in ARM. For a number of years, some project teams have applied varying levels
of effort later in the flow to exhaustively verify those assertions formally, with varying results.
However, we’re now exploring more in higher-level assertions because, for example, liveness and
safety properties have a potentially higher ROI. For instance, ensuring that a circuit is deadlock-free
has a very high value.”

What About Productivity?

The feedback on productivity varies a great deal. A perception that users must be truly expert in order
to derive productivity advantages from formal is not robustly supported by this feedback. The results
look like a situation-dependent mixed bag.

HP’s Lacey says that his team has realized a productivity value – an increase in simulation speed by
reducing the number of assertions used in dynamic verification. “We encourage our designers to write
assertions in order to communicate design intent. However, that slows simulation. To mitigate the
problem, we identify which assertions we can prove in an under-constrained environment; then we
omit them from simulation because we know they can never fire. Our strategy right now is to first
understand where we can derive the most value from formal tools, and then use them to make our
simulation cycles more productive.”

SLE’s Stremcha says that “formal verification requires a great deal of work that should be done in
design, anyway. As designers increasingly employ assertions during the design stage, the effort to
apply formal decreases.”

ST’s Haller sees occasional productivity boosts because designers must no longer devise block-level
testbenches. Nonetheless, the teams must continue to use dynamic verification because formal
verification tools still suffer from capacity shortfalls.

According to Infineon’s Galpin, his group uses any productivity gains achieved by formal to apply more
effort elsewhere in the verification flow. He said “Formal rarely reduces downstream dynamic
verification effort because we tend to apply the same number of dynamic tests to IP as we would have
done had we not used formal; and we dynamically verify the assumptions that we made in formal
about how the IP will be used. In any case, the confidence established by formal enables the team to
devote even more cycles to the core behaviors in the dynamic part of the testbench – particularly in
the case of blocks that are likely to be extensively reused.”

According to Ho at DESRES, “Formal verification effort is often equal to or greater than simulation
effort. So, we have to use it to make simulation simpler, shorter or unnecessary. That’s where we win
the productivity.”

Alcatel-Lucent’s Knäblein estimates that productivity is about the same for formal and dynamic
verification. Nonetheless, block-level productivity gains can be quite substantial. In today’s edition of
SCDsource [6], Knäblein and his colleague, Hans Sahm, report how they used both automated
assertion generation and automated formal methods to verify a complex HW/SW interface in a large
SDH/SONET chip – and slashed verification time and effort by 70 percent versus simulation.

http://en.wikipedia.org/wiki/MESI_protocol
http://www.onespin-solutions.com/downloads/SCD-Knaeblein-Sahm-Formal Method.pdf?id=332

© SCDsource 2007-2010 Page 10 of 31

What About Project Risk?

Simulation has long been the more-or-less predictable verification route. The technology limitations of
formal verification and the consequent uncertainty of success have historically fuelled a reluctance to
adopt it.

However, according to IBM’s Baumgartner, “The ability to share assertions across formal and dynamic
ABV has made an impact on formal adoption. Assertion-sharing allows us to set up a formal testbench,
and to redirect the assertions to a dynamic environment if the formal tool can’t cope. The effort to
establish these formal assertions is thus not wasted. Eliminating the project risk associated with
potentially wasted effort in formal enables us to push it to the limit.” He continued, “As formal
technology continues to improve, we can tackle verification challenges that used to be impossible in
formal. For example, we can set up a reusable formal methodology to verify error-code correction –
we don’t need CPU months of dynamic effort, which itself still carries the risk of verification gaps.”

And Methodology?

The importance of methodology came up in almost every interview. So, how do 16 of our 19
respondents rate the methodology support that they receive from technology providers? The
responses are shown in figure 6.

Figure 6: User satisfaction with technology providers’ methodology support (Source: SCDsource)

Formal Verification - Where?

What are the sweet ‘n’ sour spots of formal verification? Clearly, the answers to these questions go to
the heart of mixing formal and dynamic methods. Our user respondents broadly agreed on the sweet
spots – control circuits, and datapaths with high concurrency that do not involve data transformations.
The sour spot is datapath circuits that do involve data transformations.

© SCDsource 2007-2010 Page 11 of 31

A DVCon 2006 paper [7] spells it out. Example sweet spots include:

 Arbiters of many different kinds

 On-chip bus bridge

 Power management unit

 DMA controller

 Host bus interface unit

 Scheduler, implementing multiple virtual channels for QoS

 Clock disable unit (for mobile applications)

 Interrupt controller

 Memory controller

 Token generator

 Credit manager block

 Standard interface (for example, PCI Express)

 Proprietary interfaces

According to the paper, example sour spots include:

 Floating point unit

 Graphics shading unit

 Convolution unit in a DSP chip

 MPEG decoder

However, as IBM’s Baumgartner previously noted, the company can formally verify FPUs. In a DATE
2005 paper [8], Baumgartner et al report the fully-automated, exhaustive formal verification of fused-
multiply-add (FMA) FPUs without the need for customized tools. The approach focuses on the
arithmetic correctness of a single arbitrary instruction, and compares the FPU implementation with a
simple reference model derived from the processor's architectural specification. The approach uses a
combination of case-splitting and automatic model reduction techniques, and isolates the multiplier for
dedicated verification. According to the paper, the approach is portable to simulation, emulation,
semi-formal, and formal verification.

The foregoing sweet spot list does not include the verification of CPU and application-specific
processors or, at least, the parts of those processors that do not perform data transformations.
However, formal is being used increasingly to verify such processors.

For example, Infineon used formal to verify its 40-instruction PPv2 network processor [9]. It required
only 40 high-level (operation) properties to verify the correct pipelined processing of multiple
instructions; the correct operation of permissible, but unpredictable, behaviors such as traps and
interrupts; data paths with complex bit-manipulations; and independent execution of multiple threads
under all possible combinations of instructions, thread switches, traps and interrupts. An example of a
bug detected by formal: an error caused instruction words to be modified while stored in the context
switch buffers. The verification team hadn’t anticipated this situation. Dynamic ABV might have
detected it, but only with a great deal of luck.

DESRES designs ASICs that incorporate custom processors. Ho said “Simply by breaking the
verification task down to smaller units, we can very quickly formally verify that an individual processor
operation behaves exactly as specified for all possible combinations of inputs. We still have to simulate

© SCDsource 2007-2010 Page 12 of 31

the whole processor, but the simulation of the formally-verified pieces is essentially “off the table” as
far as the verification plan is concerned.”

Eliminating the Mystique

Some respondents think that formal verification is shrouded in an unwarranted mystique (see our
cartoon at the end of part 1).

Ho at DESRES said “Formal is just another tool in the toolkit. We have the objective to mainstream
formal in 2009. Our goal is to have every member of the verification team be proficient in the use of
both simulation and formal in that timeframe.”

Infineon’s Galpin said “There’s a common perception that you have to be a mathematical genius to
use formal. It’s not nearly as difficult to use as it’s portrayed.” He also had a suggestion for conference
organizers: “I think that conferences could improve this perception by focusing more on how formal is
used in practice, and clearly differentiate this practice from the advanced algorithm development
presented by the academics.”

We at SCDsource hope that the results of our survey will help to eliminate at least some of that
mystique.

In part 2 of the STR, we discuss:

 The detailed results for the 17 use cases.

 How formal is currently being used with dynamic verification.

 The application of formal in the ESL space.

 How technology users and providers envisage formal methods in 2012.

References

1. The Art of Verification with SystemVerilog Assertions. Faisal Haque, Khizar Khan, Jonathan
Michelson. Verification Central 2006.

2. Practical Approaches to Deployment of SystemVerilog Assertions. Faisal Haque, Jon Michelson.
EE Times 2007.

3. Structured Assertion Design Verification for Complex Safety-Critical Hardware. Kristoffer
Karlsson, Håkan Forsberg. Military and Aerospace Programmable Logic Devices (MAPLD)
Conference 2008. Paper and Presentation.

4. A comparison of three verification techniques: directed testing, pseudo-random testing and
property checking. Mike Bartley, Darren Galpin and Tim Blackmore. Proceeding of the 39th

Design Automation Conference, 2002.

5. Early formal verification of conditional coverage points to identify intrinsically hard-to-verify
logic. Richard Ho, Michael Theobald, Martin M. Deneroff, Ron O. Dror, Joseph Gagliardo, David
E. Shaw. Proceedings of the 45th Design Automation Conference, 2008.

6. Automated formal method verifies highly-configurable HW/SW interface. Joachim Knäblein and
Hans Sahm. SCDsource 2009.

7. Guidelines for creating a formal verification testplan. Harry Foster, Lawrence Loh, Bahman
Rabii, Vigyan Singhal. DVCon 2006. Paper and Presentation.

http://www.scdsource.com/article.php?id=341
http://www.verificationcentral.com/sva_book.html
http://www.verificationcentral.com/
http://www.edadesignline.com/howto/showArticle.jhtml;jsessionid=CWTKNQQVGN1DYQSNDLOSKHSCJUNN2JVN?articleID=198702138
http://nepp.nasa.gov/mapld_2008/presentations/t/Karlsson_Kristoffer_mapld08_add_1.pdf
http://nepp.nasa.gov/mapld_2008/presentations/t/10 - Karlsson_Kristoffer_mapld08_pres_1.pdf
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/2002/dac02/pdffiles/50_4.pdf
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/2002/dac02/pdffiles/50_4.pdf
http://portal.acm.org/citation.cfm?id=1391537
http://portal.acm.org/citation.cfm?id=1391537
http://www.onespin-solutions.com/downloads/SCD-Knaeblein-Sahm-Formal Method.pdf?id=332
http://oskitech.com/papers/foster-ftp-dvcon06.pdf
http://oskitech.com/papers/foster-ftptalk-dvcon06.pdf

© SCDsource 2007-2010 Page 13 of 31

8. Automatic Formal Verification of Fused-Multiply-Add FPUs. Christian Jacobi, Kai Weber, Viresh
Paruthi, Jason Baumgartner. Proceedings of DATE 2005.

9. Achieving Certified IP Quality Efficiently. Lorenzo di Gregorio, Carlo del Giglio, Michael Siegel.
EE Times 2007.

10. Zero Escape Plans: Tying Together Design, Simulation, and Formal Methods for Bulletproof
Stepping Validation. Erik Seligman, Carl Dreyer, Ken Haren, Raman Nayyar. Proceedings of
DVCon 2008. Reported in “Formal Verification Expands Its Use Model” by Bill Murray,
SCDsource 2008.

11. Post-Silicon Debug Using Formal Verification Waypoints by C. Richard Ho, Michael Theobald,
Brannon Batson, J.P. Grossman, Stanley C. Wang, Joseph Gagliardo, Martin M. Deneroff, Ron
O. Dror, David E. Shaw. Proceedings of the 43rd Design Automation Conference, 2006.

12. Can We Really Do Without the Support of Formal Methods in the Verification of Large Designs?
Umberto Rossi. 42nd Design Automation Conference, 2005.

13. Assertion-Based Design. Harry Foster, Adam Krolnik, David Lacey. Springer Verlag, 2004.

14. Unified Coverage Database Application Programming Interface (API) Design Specification
Document, Draft 29, April 2, 2009. Accellera Unified Coverage Interoperability Standard (UCIS)
committee.

15. Formal Techniques Speed Up Interconnect Verification of SystemC Virtual Platform Models.
Wolfgang Ecker, Volkan Esen, Robert Schwencker, Thomas Steininger, Michael Velten. DVCon
2008. Reported in “Formal Verification Expands Its Use Model“ by Bill Murray, SCDsource 2008.

Further Reading

1. Formal Property Checking - What The Users Say, by Richard Goering, SCDsource 2008.

2. Increasing Confidence of Complex Hardware in Safety-Critical Avionics Using Formal Methods.
Kristoffer Karlsson and Håkan Forsberg. Military and Aerospace Programmable Logic Devices
(MAPLD) Conference 2006.

http://www.date-conference.com/archive/conference/proceedings/PAPERS/2005/DATE05/PDFFILES/10e_1.pdf
http://www.eetimes.com/showArticle.jhtml;jsessionid=4KGMOUL5MEAJ2QSNDLRSKHSCJUNN2JVN?articleID=199900575&pgno=1
http://www.deshawresearch.com/publications/Post-Silicon Debug Using Formal Verification Waypoints.pdf
http://videos.dac.com/42nd/papers/41_2.pdf
http://books.google.com/books?id=uLbtQ5iTE0YC
http://www.accellera.org/activities/ucis/

© SCDsource 2007-2010 Page 14 of 31

Special Technology Report

Mixing Formal and Dynamic Verification, Part 2

By Bill Murray

In part 1 of this STR, we:

 Quantified the broadening and deepening of formal verification deployment

 Quantified the fast ramp of recent adopters

 Quantified the advancement of formal verification into design

 Discussed the crumbling barriers to formal’s adoption

 Chronicled the quest for quality

 Discussed productivity

 Outlined formal verification’s sweet ‘n’ sour spots

And we published our Exhaustive Proof cartoon.

In part 2 of this STR, we:

 Outline the 17 use cases used in the survey

 Discuss the detailed survey results

 See how formal is currently being used with dynamic verification

 Look at the application of formal in the ESL space

 Hear from both technology users and technology providers how formal methods might look in
2012

 Wrap up with the most significant findings in both parts of this report

The SCDsource Survey

According to Gary Smith of Gary Smith EDA, formal property checking is used by 65 percent of chip
design companies. Smith said “The proliferation of SystemVerilog and its assertion language, SVA, has
boosted the adoption of formal property checking.”

We surveyed 19 engineering managers and engineers in 16 companies to quantify and characterize
their use of formal property checking. Our survey population spans the design and verification of
application-specific chips, general purpose processors, graphics processors and silicon intellectual
property (IP) for applications in computing, consumer electronics, medical electronics,
military/aerospace, networking and wireless communications.

http://www.garysmitheda.com/

© SCDsource 2007-2010 Page 15 of 31

The 16 companies are industry-leading IP, chip and systems design companies – Alcatel-Lucent,
Analog Devices, ARM, Cisco, DE Shaw Research (DESRES), Fujitsu Microelectronics Europe, HP, IBM,
Infineon, Intel, Nvidia, Qualcomm, Saab, Silicon Logic Engineering (Tundra), STMicroelectronics and
Sun Microsystems.

Of the 19 respondents, 14 were employing formal verification in 2006 – this STR refers to them as
established users. This STR refers to the other five respondents, who adopted formal after 2006, as
recent adopters.

The 17 Use Cases

The survey covered the following use cases. These use cases were gleaned largely from discussions
with our interviewees, as well as from published material.

1. Early RTL code analysis to detect common design errors. Uses formal code checks and/or
assertions generated either manually or automatically [5].

2. Early block-level sanity checking and bring-up verification to check micro-architecture and
implementation intent, using white-box assertions.

3. Share block design intent and integration assumptions, using assertions.

4. Capture and share coverage targets using assertions that validate formal constraints and
define functional coverage points.

5. Protocol compliance verification.

6. Exploration and bug hunting for block/subsystem features, functions, operations, and
transactions, using grey-box or black-box assertions.

7. Exhaustive verification of block/subsystem features, functions, operations, and transactions
using grey-box or black-box assertions.

8. Verification plan-driven systematic, thorough block/subsystem verification.

9. Analysis of assertion sets for missing assertions – detects verification gaps and
validates/improves informal specification.

10. Analysis of coverage items not reached by simulation/testbench.

11. Subsystem bring-up and integration verification.

12. Signal connectivity verification.

13. Engineering change order (ECO) verification.

14. Root cause analysis of complex errors found by simulation.

15. Root cause analysis of complex errors for post-silicon debug [10, 11].

16. Legacy block/IP exploration and redesign using assertions.

17. Functional sign-off criterion.

Survey Results

We show some of the more important survey results below. Note that all survey data in the following
graphs are rounded, while derived data (such as growth rates and ratios) are calculated from the
original, non-rounded survey data. The resulting tiny inconsistencies in the maths yield considerably
greater clarity in the analysis.

http://books.google.com/books?id=ZWZAkWkNy3cC&pg=PA105&lpg=PA105&dq=%22white+box+assertions%22&source=bl&ots=EEs1RAi8jF&sig=JFebe7trz17OtiHLL85amaGf9EA&hl=en&ei=2Q0fSv7xCp6ktAPoz4CtCg&sa=X&oi=book_result&ct=result&resnum=3#PPA13,M1
http://books.google.com/books?id=ZWZAkWkNy3cC&pg=PA105&lpg=PA105&dq=%22white+box+assertions%22&source=bl&ots=EEs1RAi8jF&sig=JFebe7trz17OtiHLL85amaGf9EA&hl=en&ei=2Q0fSv7xCp6ktAPoz4CtCg&sa=X&oi=book_result&ct=result&resnum=3#PPA11,M1
http://books.google.com/books?id=ZWZAkWkNy3cC&pg=PA105&lpg=PA105&dq=%22white+box+assertions%22&source=bl&ots=EEs1RAi8jF&sig=JFebe7trz17OtiHLL85amaGf9EA&hl=en&ei=2Q0fSv7xCp6ktAPoz4CtCg&sa=X&oi=book_result&ct=result&resnum=3#PPA11,M1

© SCDsource 2007-2010 Page 16 of 31

Use Case Employment in 2009

Use case employment in 2009 by our 19 respondents is shown in figure 7. The results are ordered
from most widely used at the top to least widely used at the bottom.

Figure 7: Use case employment 2009 (Source: SCDsource)

The results show significant use of formal verification throughout the design and verification flow from
initial RTL checks to verification sign-off, and even after first silicon availability. Even the least-used
case is employed by nearly one-third of our respondents. Of particular note is:

 The evidence that formal verification is advancing backwards into design (see part 1 of the
STR). Early RTL analysis is already among the most widely-employed use cases in 2009, used
by 68 percent of the respondents; and about 37 percent use formal assertions to define and
share design intent.

 Analysis of coverage items not reached by simulation is a second-ranked use case, with 79
percent of respondents employing it. Clearly, this complementary verification approach is a
key value in mixing formal and dynamic verification.

 More than half of the respondents use formal analysis to identify the root cause of complex
errors in post-silicon debug.

© SCDsource 2007-2010 Page 17 of 31

Top 3 Use Cases in 2009

Does “most widely used” necessarily mean “most important?” We asked our survey participants to
identify their Top 3 use cases. The results are shown in figure 8, maintaining the use case order of
figure 7.

Figure 8: Aggregate Top 3 use cases vs. use case employment 2009 (Source: SCDsource)

© SCDsource 2007-2010 Page 18 of 31

The results illustrate the importance of the question. Protocol compliance verification is the most
widely employed use case, employed by 84 percent of respondents, but only half of those respondents
identified it as a Top 3 use case. By contrast, exhaustive verification is the fourth most widely
employed use case, used by 68 percent of the respondents, but nearly four-fifths of them – 53 percent
of respondents – identified it as a Top 3 use case. Result: protocol compliance verification ranks fourth
in the Top 3 ranking, while exhaustive verification ranks first. Exhaustive verification – formal's major
traditional perceived strength – remains the most important use case, despite formal's proliferation up
and down the design and verification flow.

Two use cases tie for second rank, with 47 percent of respondents placing these use cases in their Top
3:

 Early block-level sanity checking and bring-up verification to check micro-architecture and
implementation intent, using white-box assertions.

 Exploration and bug hunting for block/subsystem features, functions, operations, and
transactions, using grey-box or black-box assertions.

Note: protocol compliance verification is not ranked third because the second rank tie puts three use
cases ahead of it – there is no third rank.

Is there a difference in use case employment between recent adopters and established users in 2009?
The two are compared in figure 9, maintaining the use case order of figure 7.

The shapes of the two distributions are similar, indicating that the two groups may have similar
assessments of the ROI of any given use case.

Interestingly, of the recent adopters, 100 percent employ formal methods to analyze coverage items
not reached by simulation, compared with 71 percent of established users. The absolute percentages,
however, should be used with caution – a single “vote” in the recent adopter population can change
the use factor by 20 percentage points, while a single “vote” in the established user population can
change it by only about 7 percentage points.

© SCDsource 2007-2010 Page 19 of 31

Figure 9: Use case employment 2009 recent adopters vs. established users (Source: SCDsource)

Adoption Speed and Profile

In part 1 of this STR, we compared the average use case employment of recent adopters and
established users, and observed that the latter appear to be leading the former by about three years.
Specifically, in 2009, recent adopters are employing about 7.8 use cases on average versus 6.6 by the
established users in 2006; while recent adopters are projected to use 10.8 use cases in 2012 versus
10.4 by established users in 2009.

© SCDsource 2007-2010 Page 20 of 31

The obvious question is: how do the detailed employment profiles compare at similar stages of
adoption? Are there any obvious similarities or dissimilarities? A comparison of the two groups’ use
case employment is shown in figure 10, maintaining the use case order of figure 7. It compares use
case employment by established users in 2006 with that of recent adopters in 2009.

Figure 10: Established users 2006 compared with recent adopters 2009 (Source: SCDsource)

With the exception of the analysis of coverage items not reached by simulation, the shapes of the use
profiles are similar. Moreover, the percentage of respondents in each group employing any given use
case is similar – often nearly identical – with the exception of subsystem bring-up and the analysis of
coverage items not reached by simulation.

© SCDsource 2007-2010 Page 21 of 31

In summary, then, the recent adopters in 2009 are in roughly the same state of adoption as the
established users were in 2006. Could improved methodologies and technologies narrow the gap or,
more accurately put, could they significantly accelerate the adoption of formal verification? If so, how?
That is the subject of the next section.

Mixed Formal and Dynamic – How?

In a DAC 2005 paper [12], ST’s Umberto Rossi observed that “From the user point of view, verification
products still lack integration between dynamic analysis and formal assertion analysis. A closer
cooperation or a better merger of the respective results may constitute a significant plus for the
users.”

This is the key to greatly increased formal verification use in the mainstream verification flow.
Knowing where best to apply formal and dynamic verification methods and what the
coverage/productivity payback is in any given scenario will help design and verification teams to make
dependable, highest-ROI decisions with predictable results. Such consistent, comprehensive, objective
data could identify and help proliferate best practices – and narrow the gap between recent adopters
and established users.

Cross-Leveraging Assertions

So, how does the industry achieve that integration between formal and dynamic verification? Of
course, both techniques leverage assertions. What kind of assertions, and where? In our survey, we
partitioned assertions into two basic classes [13]:

1. Structural assertions

 Low level assertions that verify detailed RTL behavior, such as that of a finite state
machine (FSM).

 Adequate for localized sanity checking and verification.

 Must often be modified in response to RTL implementation modifications.

 Difficult-to-impossible to verify a design exhaustively.

2. Operation/transaction assertions

 Assertions that verify RTL behavior at a higher level, such as block reads and writes.

 Correspond more closely to functionality as defined in the specification – a more intuitive
approach to verification.

 Must often be modified in response to specification changes, but generally not to RTL
implementation changes.

 Can deliver significantly higher verification productivity than structural assertions.

 Suitable for exhaustive verification.

Our respondents’ use of these assertions in simulation/testbenches and formal verification is shown in
figure 11.

© SCDsource 2007-2010 Page 22 of 31

Figure 11: The use of different assertion types in simulation and formal verification (Source:
SCDsource)

All of our respondents to this part of the survey (in this case, 16, not 19) use structural assertions in
simulation, and all use operation assertions in formal. Eighty-eight percent of respondents use
operation assertions in simulation, projected to increase to 100 percent by 2012; and 88 percent use
structural assertions in formal, projected to increase to 94 percent by 2012.

This large degree of overlap would indicate the potential for a great deal of cross-leverage. So, how
are they being cross-leveraged? Some respondents employ the same assertions in both environments,
but many don’t. Moreover, our survey shows that only 31 percent of respondents use formal to verify
testbench assertions, both structural and operational. However, this is projected to increase to 63
percent by 2012.

Integrating Coverage Metrics

Establishing a tighter coupling between simulation and formal verification is clearly a significant need
for most of the respondents in the survey, but they need a methodology to do it. Right now, most of
our respondents mix formal and dynamic verification at only the verification plan level. Thereafter, the
two approaches largely go their separate ways. Each has its own coverage goals; progress is
measured or estimated separately; and total coverage is determined by eye-balling overall progress to
the verification plan.

ARM wants to make eye-balling easier. Bryan Dickman said “We’re moving towards database-driven
planning. The idea is to upload results to a mySQL database and use the verification plan as a
database query. We would then have a live view of results versus plan. Of course, both plan and
database would contain both simulation and formal targets. That’s our destination.”

However, what everyone really wants is a unified coverage approach. DESRES’ Ho said “A combined
formal and simulation verification method would be much more effective if users could know how
much coverage was achieved by each technique, and thereby avoid redundant verification.” He
continued “We need the ability to import coverage data from different tools from different vendors.
Currently, there is no good way of doing that without a great deal of user involvement in translation.”

Ho is now the chair of Accellera’s Unified Coverage Interoperability Standard (UCIS) committee. The
stated objectives of the committee are to:

 Identify interoperability opportunities between various coverage sources

 Define standard coverage models for commonly used metrics

 Define an operability standard that allows coverage data to be exchanged among EDA
vendors' tools and IC vendors environments

http://www.accellera.org/home
http://www.accellera.org/activities/ucis

© SCDsource 2007-2010 Page 23 of 31

Ho, together with Accellera’s chair, Shrenik Mehta, reported progress-to-date. Ho said “The committee
seeks to establish standards for those coverage items upon which members can agree, but also to
define an extension mechanism for vendor-specific or user-specific coverage types.” Ho observed that
“Standardizing coverage types will enable the automatic merging of data, while standardizing an
extension mechanism for new coverage types allows for innovation.”

A draft proposal [14] dated April 2009 identifies three use models for data merging, 16 verification
coverage types targeted for standardization, and a conceptual API for the database.

The use models cover:

 Temporal merging: merging of coverage data across multiple runs of the same verification
process.

 Spatial merging: merging of coverage data across different parts of a design.

 Heterogeneous data merging: merging of data from different verification processes.

The 16 verification coverage types are:

 Toggle coverage

 Line/statement coverage

 Branch coverage

 Condition/expression coverage

 Trigger coverage

 FSM state coverage

 FSM transition coverage

 Value-transition coverage

 Path coverage

 Cover point/coverage point

 Cross-coverage

 Cover group coverage

 Cover property

 Assertion coverage

 Assertion result

 Transaction coverage

Accellera expects to release a document to the general public in 2010.

System-Level Formal Verification

Formal Analysis

In his DAC 2005 paper [12], ST’s Umberto Rossi noted that, in order to verify the millions of complex
configurations of a parametric IP “Formal methods have to extend their effectiveness by including so-
called transactional level models (TLM) in their analysis, which abstract the mechanisms that SoC
blocks use to communicate and synchronize among themselves. Two major problems have to be faced:
the first is that TLM includes a range of abstraction levels and the second is that a mapping between
TLM assertions and RTL assertions should be provided and formally proven.”

© SCDsource 2007-2010 Page 24 of 31

Three years later, not much had changed. In a DVCon 2008 presentation [15], Wolfgang Ecker,
principal engineer in Infineon’s communications solution business group, observed “The barrier to
SystemC TLM interconnect verification is that SystemC does not support native temporal assertions.
Previous efforts to rectify this deficiency in SystemC apply assertion-based verification (ABV) only at
the RT-level.”

Mike Meredith, president of the Open SystemC Initiative (OSCI), said “There have been discussions in
the OSCI verification working group about what temporal assertion checking at the TLM level really
means. No firm consensus has been reached as to any standardization. However, there are OSCI
members who are investigating formal property checking in SystemC, and they are making some
progress in devising methods to do it. These would be proprietary, but are still valuable additions to
the SystemC ecosystem.”

Does OSCI expect to see any progress by 2012? Meredith said “As far as development and
deployment in the ecosystem is concerned, I certainly do. As far as standardization is concerned, it
depends upon what makes sense to the developers of the proprietary approaches and the rest of the
verification working group about what to try to standardize.”

System-level Equivalence Checking

However, there is one system level formal verification approach that is in use today. System level
equivalence checking verifies equivalence between a C/C++/SystemC architecture model and the
corresponding RTL micro-architecture implementation. The technology's sweet spot is assertion-based
formal verification’s sour spot – data transformation logic.

According to Prosenjit Chatterjee, hardware engineering manager at Nvidia, “Graphics processors
leverage a broad range of data transform functions, such as arithmetic logic, address translation and,
in general, complex mux logic. Many of these blocks are quite complex, mission-critical functions – not
just simple blocks.”

Prior to adopting the technology, said Chatterjee “We relied upon directed and directed random
simulation tests to compare the two models. It found a lot of bugs, but it could not exhaustively cover
all possible input scenarios, so it was not possible to conclusively prove equivalence. Now, we can
prove equivalence with system level equivalence checking, and use any equivalence mismatches to
devise simulation tests.”

Adoption took a matter of a few days, according to Chatterjee. “There is not much training required. It
is not necessary to write properties because, in essence, the C model is the property. The
environment requires simple input constraints, such as min/max input values. Sometimes the
equivalence check is push-button; sometimes we must decompose the input values into sub-cases or
break up the two models at transaction matching internal interfaces, and then prove each one
individually.”

The value of the approach grows with increasing expertise in writing C models that the technology can
handle. According to Chatterjee, “A C model developer might describe data transform functions using
dynamic memory allocation or loops with arbitrary bounds. However, hardware design needs fixed
bounds, so C developers must replace these constructs with fixed-bound constructs – say, a fixed
memory with fixed min/max bit count.” In other words, the developer has to use synthesizable code,
regardless of whether the design team uses high level synthesis. Chatterjee added “As the technology
is increasingly enhanced with further C constructs, developers have more freedom to use constructs
that come more naturally to them.”

Nonetheless, the requirement that the code be synthesizable remains. Any disadvantages? “C is not
really optimal for synthesis. The C model might actually be larger than the RTL model,” said
Chatterjee. He also pointed to the inherent difficulty of identifying correspondence between the
abstract C model and the RTL implementation model. “It’s not the same as RTL/gate and gate/gate
equivalence checking,” he said.

© SCDsource 2007-2010 Page 25 of 31

Chatterjee concluded “We plan to use system level equivalence checking on as many data
transformation functions as possible. Looking ahead to 2012, I hope to see system level equivalence
checking handle much bigger design sizes.”

Asked about the progress towards an agreement on the synthesizable subset of SystemC, OSCI’s
Meredith said “We’ve made a lot of progress over the last twelve months. There is a significantly
upgraded draft in the OSCI internal approval loop, and we expect to put it into public review this
Spring.

The World in 2012

Use Case Employment in 2012

In part 1 of this STR, we showed that use case employment will grow by 32 percent from an average
of 9.7 use cases per respondent in 2009 to 12.8 in 2012 – a significant deepening of formal use in this
population of 19 respondents. What does the detailed 2012 projected use case employment look like?
Results are shown in figure 12, maintaining the use case order of figure 7.

© SCDsource 2007-2010 Page 26 of 31

Figure 12: 2012 use case employment compared with 2009 (Source: SCDsource)

The most widely deployed use cases in 2012 are projected to be:

1. Early RTL analysis, identified by 95 percent of respondents. This is up from 68 percent of
respondents in 2009. This proliferation and growth (38 percent over 2009) indicates
widespread adoption of formal methods by design engineers.

2. Share block design intent and integration assumptions, identified by 89 percent of respondents.
Again, this proliferation indicates widespread adoption of formal methods in design.

© SCDsource 2007-2010 Page 27 of 31

The top two growth cases from 2009 to 2012 are:

1. Share block design intent and integration assumptions, which is projected to grow by 143
percent from 37 percent of respondents in 2009 to 89 percent in 2012.

2. Sign-off criterion, which is projected to grow by 71 percent. Proliferation of this use case from
37 percent of respondents to 63 percent of respondents is consistent with (a) a growing
confidence in formal verification and (b) a consequent reliance upon formal verification at a
very critical point in the mainstream verification flow.

Users look to 2012

We asked interviewees to look out three years and visualize what formal verification may look like – or
what they would like it to look like. We were not looking for a forecast, just a vision of how the
methodology and the technology might look in 2012. Most foresee “bigger, better, faster” technology
– more capacity, improved ease of use, faster proofs and debug. And most assume that these
improvements will occur incrementally.

However, closer integration of formal and simulation methodologies and technologies was at or near
the top of everyone’s list. Users pointed to the need for unified coverage metrics, a modular
verification infrastructure, common constraints, and a correct-by-construction design flow. And most
are keeping a close eye on the Accellera UCIS efforts.

Modular Infrastructure

For HP’s David Lacey, the importance of the UCIS effort is more than simply melding coverage results
– it is critical to the establishment of a modular verification infrastructure. He said “Such an
infrastructure would give us more of a toolbox approach to verification. For example, we would be able
to integrate verification IP into formal and simulation in much the same way. So, formal needs to go
down that path.”

Common Constraints

D. E. Shaw Research’s Richard Ho would really like constrained random testbenches to have the same
constraints as formal. “This would enable simulation to be really smart. You could run simulation up to
a coverage point of interest, then invoke formal analysis. This requires that the constraints for random
testbenches be understandable by formal tools. The problem is that testbench writers use biasing of
random variables and layered scenarios instead of using assertions to constrain the input sequences.
A common language would solve a big interoperability problem and yield very smart verification.”

Infineon’s Darren Galpin concurs. “When writing constraints for random dynamic verification and
formal verification environments, you’re essentially doing the same thing, but in a different way. For
the random dynamic environment, you’re writing a set of code to generate – for example – possible
stimuli. You then take a random test path through the protocol space. In the formal environment, you
have to constrain the proof to legal operations and test everything simultaneously. I don’t see any
reason why those two sets of constraints ultimately couldn’t be used for both tools.”

Correct-by-Construction Design Flow

ARM’s Bryan Dickman said “We hope to see a correct-by-construction design flow that may also
reduce the overall verification burden. We could get there by having designers use the tools from
design onwards in the flow to systematically explore and formally prove their code. At the moment,
we’re using formal rather retrospectively.”

© SCDsource 2007-2010 Page 28 of 31

Formal “a must”

The last word from the users goes to IBM’s Jason Baumgartner: "It used to be that you must have
sinned greatly to have the formal verification guy in your office. But, with greatly enhanced capacity
and reusability, formal has become substantially more mainstream, and is now much easier for casual
users to set up. Our post-design ‘lessons learned’ reviews generally find that we should do more in
formal and mixed formal/dynamic verification. Many now view formal as a must.”

Technology providers look to 2012

Cadence Design Systems

Sarah Lynne Cooper Lundell, senior product marketing manager, said “By 2012, the focus will be on
analyzing and optimizing clear and measurable unified verification metrics. How the contributions to
the metrics are generated will be relatively less important. They could come from any combination of
formal, hybrid, testbench simulation, acceleration, emulation or other engines. But the discussion will
be about what the metrics mean for reaching verification closure.”

According to Lundell, this shift will increase formal’s ROI because “unified metrics eliminate the need
to duplicate efforts to verify any given functionality, and allow project teams to deploy the right
solution for a given task and for the skills available. Traditionally, formal analysis has been used either
early in the verification process prior to the availability of a testbench, or on really tough verification
targets; but generally adjacent to mainstream verification. Unified metrics will allow project teams to
track formal’s progress alongside that of testbench simulation. This will break down walls that have
hampered formal’s adoption.”

Calypto Design Systems

Anmol Mathur, CTO, expects system-level equivalence checking to become a standard step in high-
level synthesis (HLS) verification flows by 2012. He said “The two main enablers will have been
established. First, the synthesizable subsets of C/SystemC will have been standardized; and second, a
standard exchange format to transfer information from HLS tools to system level equivalence
checking technology will have been agreed.”

Mathur continued “This will enable checking tool to leverage information about boundaries such as
function hierarchies or loop bodies to decompose the complex formal equivalence checking problem in
order to scale to the block sizes that HLS tools will target in 2012.”

Moreover, he said, “Fundamental progress in formal solvers that work at the operator-level rather
than manipulating bit-level Boolean functions has been critical to allowing system level equivalence
checking technology to tackle arithmetic intensive designs. I expect better merging of this technology
with formal analysis of control to further boost tool capacity. And further improvements in sequential
proof engines will allow designs with larger divergence in sequential behaviors to be checked.”

Jasper Design Automation

Jasper sees formal methods extending beyond verification. Rajeev Ranjan, CTO, said “Higher tool
capacity and scalability, coupled with innovative methodology, will enable the application of formal
throughout the design flow, from architectural analysis, through design and integration, to silicon
debug.”

Ranjan continued “And formal technology will bring breakthrough changes in IP delivery. Third party
IP will be encapsulated in a formal technology-based ‘executable shell’ that will make it easy for

© SCDsource 2007-2010 Page 29 of 31

designers to adopt the IP. It will allow designers to easily comprehend the critical behaviors of the IP,
explore dependencies, and understand bus protocols.”

The company also projects that formal technology will be applied at the system level. Ranjan said
“Standard ways of architectural and system-level modeling will enable the application of formal to
property verification of high-level models, such as SystemC models. We shall see formal methods
used in architectural models, TLM, HW/SW co-design, and algorithms developed in MatLab.”

Mentor Graphics

Harry Foster, chief verification scientist, foresees new, automatic applications built on formal
technology that are easy to use and require no special expertise in formal verification or languages.
“Furthermore, we predict a tighter integration of formal and simulation algorithms to solve specific
problems in coverage closure as well as pre- and post-silicon debugging,” he said.

Foster pointed out that about 19 percent of the industry has adopted formal property checking, and
about 41 percent has adopted simulation-based, coverage-driven techniques that leverage functional
coverage properties specified using modern assertion languages.

He said “Clearly, there are opportunities to improve verification processes by taking advantage of
assertions in either simulation or formal property checking. However, part of the challenge of adopting
assertion languages is the expertise required to grasp temporal logic and declarative forms of
specification. These concepts, which form the foundation of today’s assertion languages, are foreign to
many of engineers. Perhaps the recent emergence of assertion libraries and assertion-based
verification IP will assist the adoption of assertion-based techniques in the future.”

OneSpin Solutions

Michael Siegel, OneSpin's director of product marketing, stated “Today, formal verification is often
used in addition to dynamic verification to increase design quality. However, the main potential of
combining formal and dynamic lies in mastering the verification productivity challenge. We foresee
enhanced methodologies and tools that guide users to the optimal verification approach in order to
predictably reduce overall verification effort. Knowing when, where and how to apply the most
appropriate method – formal or dynamic verification – is key.”

Siegel foresees enhancements that will spawn more automated and integrated formal/dynamic
verification flows. “Formal will be a standard, mainstream technology in the verification toolkit for
design, verification and integration engineers,” he said, “and enhanced tool interoperability will reduce
the manual effort required in today’s combined formal/dynamic verification flows.”

“Increased verification productivity also depends upon the ability to accurately assess overall
verification coverage and tool support to close coverage gaps,” Siegel continued. “So, it is critical that
the industry establishes suitable standard coverage metrics shared between formal and dynamic.”

Real Intent

Carol Hallett, Real Intent's vice president of sales and marketing, said that automatic formal
verification is an essential component in all functional verification flows today, and that its use will
increase substantially by 2012.

According to Hallett, “Automatic formal verification applies pre-determined rules to perform error
checking automatically, with virtually no engineering effort or design style restrictions. It runs formal
analysis automatically, and generates failure reports that minimize debug effort.” She continued “The
methodology tackles two endemic problems. Its early bug detection mitigates the spiral of bug

© SCDsource 2007-2010 Page 30 of 31

detection, debugging and bug fixing; and its automation deals with the ever-growing problem of
constrained resources.”

Hallett predicts that improved automatic error checking rules applied early in the design flow; faster
convergence on larger designs; and much more advanced reporting and debugging support will
increase the bug detection rate from about 50 percent today to about 70 percent by 2012.

Synopsys

Dan Benua, principal corporate application engineer, sees a continuing trend to use more formal and
assertion-based verification to complement the dominant constrained-random coverage-driven
simulation approach. “This trend is being driven by the need to improve verification cost-efficiency,
and is also facilitated by progress in formal technology, language and library standardization, and
easier-to-use tools,” he said

He continued, “There will still be experts doing hard-core model checking, but the average designer or
simulation user will be leveraging more formal analysis also. In some cases, engineers may not even
be aware that formal algorithms are running inside their simulator; providing benefits like debugging
hints, coverage closure, or smarter stimulus generation. Multi-core hardware runs these activities in
the background with minimal impact on simulation runtime.

“We are still in the early stages of understanding how to integrate and potentially merge these
technologies, said Benua. “We see big opportunities ahead to improve the functional verification
process and we are hard at work on the technologies, methodologies, and tools needed to achieve
them.”

Wrap-Up

So, what are the major findings of this STR?

 In this population of 19 users, formal verification’s use nearly doubled from 2006 to 2009.

 The 5 recent adopters are closely tracking the adoption curve of the 14 established users.

 The results show significant use of formal verification throughout the design and verification
flow from initial RTL checks to verification sign-off, and even after first silicon availability.

 Adoption barriers are crumbling – capacity increases and ease-of-use enhancements make
adoption easier – but many respondents want to see a lot more progress.

 The primary reason for adopting formal was verification quality – but productivity is a key
factor in the extent of formal’s deployment.

 Formal’s sweet spots are expanding.

 Formal is “a must.”

 System level property checking is in a barely embryonic stage, but system level equivalence
checking has been established as a viable approach.

 Last, but not least, we still need a robust, systematic methodology for mixing formal and
dynamic verification. Our interviewees view the work of Accellera’s UCIS as critical to this
effort.

© SCDsource 2007-2010 Page 31 of 31

References

1. The Art of Verification with SystemVerilog Assertions. Faisal Haque, Khizar Khan, Jonathan
Michelson. Verification Central 2006.

2. Practical Approaches to Deployment of SystemVerilog Assertions. Faisal Haque, Jon Michelson.
EE Times 2007.

3. Structured Assertion Design Verification for Complex Safety-Critical Hardware. Kristoffer
Karlsson, Håkan Forsberg. Military and Aerospace Programmable Logic Devices (MAPLD)
Conference 2008. Paper and Presentation.

4. A comparison of three verification techniques: directed testing, pseudo-random testing and
property checking. Mike Bartley, Darren Galpin and Tim Blackmore. Proceeding of the 39th

Design Automation Conference, 2002.

5. Early formal verification of conditional coverage points to identify intrinsically hard-to-verify
logic. Richard Ho, Michael Theobald, Martin M. Deneroff, Ron O. Dror, Joseph Gagliardo, David
E. Shaw. Proceedings of the 45th Design Automation Conference, 2008.

6. Automated formal method verifies highly-configurable HW/SW interface. Joachim Knäblein and
Hans Sahm. SCDsource 2009.

7. Guidelines for creating a formal verification testplan. Harry Foster, Lawrence Loh, Bahman
Rabii, Vigyan Singhal. DVCon 2006. Paper and Presentation.

8. Automatic Formal Verification of Fused-Multiply-Add FPUs. Christian Jacobi, Kai Weber, Viresh
Paruthi, Jason Baumgartner. Proceedings of DATE 2005.

9. Achieving Certified IP Quality Efficiently. Lorenzo di Gregorio, Carlo del Giglio, Michael Siegel.
EE Times 2007.

10. Zero Escape Plans: Tying Together Design, Simulation, and Formal Methods for Bulletproof
Stepping Validation. Erik Seligman, Carl Dreyer, Ken Haren, Raman Nayyar. Proceedings of
DVCon 2008. Reported in Formal verification expands its use model by Bill Murray, SCDsource
2008.

11. Post-Silicon Debug Using Formal Verification Waypoints by C. Richard Ho, Michael Theobald,
Brannon Batson, J.P. Grossman, Stanley C. Wang, Joseph Gagliardo, Martin M. Deneroff, Ron
O. Dror, David E. Shaw. Proceedings of the 43rd Design Automation Conference, 2006.

12. Can We Really Do Without the Support of Formal Methods in the Verification of Large Designs?
Umberto Rossi. 42nd Design Automation Conference, 2005.

13. Assertion-Based Design. Harry Foster, Adam Krolnik, David Lacey. Springer Verlag, 2004.

14. Unified Coverage Database Application Programming Interface (API) Design Specification
Document, Draft 29, April 2, 2009. Accellera Unified Coverage Interoperability Standard (UCIS)
committee.

15. Formal Techniques Speed Up Interconnect Verification of SystemC Virtual Platform Models.
Wolfgang Ecker, Volkan Esen, Robert Schwencker, Thomas Steininger, Michael Velten. DVCon
2008. Reported in “Formal Verification Expands Its Use Model by Bill Murray, SCDsource 2008.

Further Reading

1. Formal Property Checking - What the Users Say, by Richard Goering, SCDsource 2008

2. Increasing Confidence of Complex Hardware in Safety-Critical Avionics Using Formal Methods.
Kristoffer Karlsson and Håkan Forsberg. Military and Aerospace Programmable Logic Devices
(MAPLD) Conference 2006.

http://www.verificationcentral.com/sva_book.html
http://www.verificationcentral.com/
http://www.edadesignline.com/howto/showArticle.jhtml;jsessionid=CWTKNQQVGN1DYQSNDLOSKHSCJUNN2JVN?articleID=198702138
http://nepp.nasa.gov/mapld_2008/presentations/t/Karlsson_Kristoffer_mapld08_add_1.pdf
http://nepp.nasa.gov/mapld_2008/presentations/t/10 - Karlsson_Kristoffer_mapld08_pres_1.pdf
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/2002/dac02/pdffiles/50_4.pdf
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/2002/dac02/pdffiles/50_4.pdf
http://portal.acm.org/citation.cfm?id=1391537
http://portal.acm.org/citation.cfm?id=1391537
http://www.onespin-solutions.com/downloads/SCD-Knaeblein-Sahm-Formal Method.pdf?id=332
http://oskitech.com/papers/foster-ftp-dvcon06.pdf
http://oskitech.com/papers/foster-ftptalk-dvcon06.pdf
http://www.date-conference.com/archive/conference/proceedings/PAPERS/2005/DATE05/PDFFILES/10e_1.pdf
http://www.eetimes.com/showArticle.jhtml;jsessionid=4KGMOUL5MEAJ2QSNDLRSKHSCJUNN2JVN?articleID=199900575&pgno=1
http://www.deshawresearch.com/publications/Post-Silicon Debug Using Formal Verification Waypoints.pdf
http://videos.dac.com/42nd/papers/41_2.pdf
http://books.google.com/books?id=uLbtQ5iTE0YC
http://www.accellera.org/activities/ucis/

	Special Technology Report
	Mixing Formal and Dynamic Verification, Part 1
	SCDsource User Survey
	User Base Broadened
	Use Employment Deepened
	Total Use Nearly Doubled
	Recent Adopters Ramp Fast
	Advancing Backwards in the Flow

	Tools Revenue Numbers
	Formal Adoption - Why Now?
	Crumbling Adoption Barriers
	Capacity
	Ease of Use
	Methodology

	Quest for Quality
	Safety First
	Bug Hunting First, but Sign-Off is the Ultimate Goal
	Exhaustively Verify – No Anticipation Necessary
	Advancing Backwards in the Design Flow
	Grappling with Multiprocessing

	What About Productivity?
	What About Project Risk?
	And Methodology?
	Formal Verification - Where?
	Eliminating the Mystique
	References

	Special Technology Report
	Mixing Formal and Dynamic Verification, Part 2
	The SCDsource Survey
	The 17 Use Cases
	Survey Results
	Use Case Employment in 2009
	Top 3 Use Cases in 2009
	Adoption Speed and Profile

	Mixed Formal and Dynamic – How?
	Cross-Leveraging Assertions
	Integrating Coverage Metrics

	System-Level Formal Verification
	Formal Analysis
	System-level Equivalence Checking

	The World in 2012
	Use Case Employment in 2012

	Users look to 2012
	Modular Infrastructure
	Common Constraints
	Correct-by-Construction Design Flow

	Formal “a must”
	Technology providers look to 2012
	Wrap-Up
	References

